ungepaarter t-Test

Einführung in den ungepaarten t-Test

Der t-Test in diesem Kapitel hat viele Namen: ungepaarter t-Test, unabhängiger t-Test, t-Test für unabhängige Stichproben, t-Test für unkorrelierte Stichproben und noch viele weitere mehr. Es ist der ursprünglich Student’s t-Test, benannt nach dem Pseudonym seines Erfinders.

Oft wollen Wissenschaftler zwei Gruppen von Messwerten aus zwei Gruppen mit unterschiedlichen Personen (wobei es nicht zwangsläufig Personen sein müssen) vergleichen und schauen, ob die Mittelwerte beider Gruppen sich unterscheiden. Die Möglichkeiten dieser Art Studiendesign sind keine Grenzen gesetzt.

Können Männer besser Autofahren als Frauen? Geben iPhone-Benutzer mehr Geld aus als Android-Benutzer? Wählen erfahrene Fondsmanager Aktien aus, die mehr Geld erwirtschaften als ein Zufallsgenerator es tun würde? — all diese Fragen lassen sich mit dem ungepaarten t-Test beantworten.

Themenüberblick

Im ersten Teil werden wir einen Überblick über alle Voraussetzungen für den ungepaarten t-Tests geben und zeigen, wie man sie mit SPSS überprüft. In dem Abschnitt Daten zeigen wir, wie die Daten aufbereiten sein müssen, damit wir damit einen ungepaarten t-Test berechnen können. Hier findet sich auch zusätzlich ein Beispieldatensatz, den wir für alle Berechnungen verwenden werden.

Sobald wir die Daten bereit haben, überprüfen wir, ob alle Voraussetzungen des ungepaarten t-Tests erfüllt sind. Bei Verletzungen einzelner Voraussetzungen existieren auch teilweise Korrekturen und Maßnahmen, die wir ebenfalls dort besprechen. Danach kann die eigentliche Datenanalyse beginnen.

Zu guter Letzt müssen die Ergebnisse unserer Datenauswertung noch interpretiert und berichtet werden. Dies tun wir im letzten Teil. Die Interpretation und Verschriftlichung der Daten hängt davon ab, ob Voraussetzungen verletzt wurden. Entsprechende Musterformulierungen in deutscher und englischer Sprache stehen zur Verfügung. Zusätzlich gehen wir auch noch auf die entsprechenden Effektstärken ein.

  • Schnelle Hilfe bei
    Statistikproblemen?
  • Wir helfen.
    • Individuelle statistische Beratung
    • Direkter, persönlicher Ansprechpartner
    • Für alle Fachrichtungen